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a b s t r a c t

One of the most difficult tasks involved in the process of noise monitoring near airports is related to the
automatic detection and classification of aircraft noise events.

These tasks can be solved by applying pattern recognition techniques to the audio signal captured by a
microphone. But now the problem is caused by the background noise, which is present in real environ-
ments.

This paper proposes a real-time method for continuously tracking the similarity of the input sound and
the aircraft’s sounds. Using these facilities, the monitoring unit will be able to mark aircraft events, or to
make measurements only when aircraft sound is louder than background noise.

A one-class approach has been applied to this detection-by-classification method.
Using the default setup, 93% of the aircraft’s events which held an SNR of 6–8 dB were detected, for 30

different locations with diverse soundscapes.
! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Noise pollution has become one of the most important reasons
for concern related to environment in advanced countries. In order
to manage and reduce noise pollution and its adverse effects, some
legislation initiatives have been carried out (the most important is
Directive 2002/49/EC [1]).

Referring to transport infrastructures, noise monitoring systems
are very important for planning stages and noise management.

Noise monitoring units, especially those integrated into airport
monitoring systems, must be able to measure sound level time his-
tory, identifying sound events and classifying the events produced
by aircraft.

The classification task, in relation to the sound source of the
noise event, is the weak point of the monitoring units.

A simple monitoring unit detects noise events using thresholds
applied to sound level time history. When noise level reaches a va-
lue over the threshold for longer than an established duration, a
noise event is detected.

The classification of these events, in most of the monitoring sys-
tems of international airports is carried out using radar tracks of
flights [2,3]. If the noise event has been detected when an aircraft
is near the monitor, this event will be classified as produced by an
aircraft. No other acoustic characteristics of the sound are
considered.

Some other attempts have been made to classify environmental
noise events. They used pattern recognition or speech recognition

techniques in order to classify environmental sound events [4–10].
Most of them applied a detection and classification approach, using
neural networks [11], hidden Markov models [11,12], source sepa-
ration [13], They have shown quite good results, but the main
problem they have shown is related to detection in noisy
environments.

Many other references can be found related to speech or
speaker recognition, auditory scene classification, musical
instruments. The compilation of the main works in non-speech
sound events detection and classification can be found in Refs.
[14,15].

Explicitly related to aircraft sounds recognition [16,17], apply
neural networks for the recognition of airplane type during taking
off.

Although pattern recognition approaches are still used [18],
nowadays, most of the research strategies in the detection of envi-
ronmental noise sources have been oriented to the use of micro-
phone arrays [19].

2. Objectives

The main objective of this project is to design a system that can
detect aircraft sounds in real time, so that its integration with a
monitoring unit can improve aircraft detection rates during unat-
tended measurements.

The input signal will be acquired by a single microphone, which
could be the one in the monitoring unit.

This system will be especially useful in standalone monitors
which are not integrated into an airport monitoring system (when
no radar data are available).
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3. Methodology

3.1. Audio recordings

The first stage in this project consisted in gathering sound
recordings and acoustic measurements at different locations in or-
der to make a description of the noise sources for different sound-
scapes, with a large number of different aircraft and non-aircraft
sounds, in noisy and quiet environments, in the presence and the
absence of aircraft.

Thirty different outdoors locations were selected in several cit-
ies in Spain, most of them near Madrid–Barajas airport.

A noise monitor, equipped with an outdoor microphone, was
used to log equivalent sound pressure level every second (LAeq,1s).
The AC output of the monitor was also recorded in approximately
one hour length audio files (44,100 Hz, 16 bits, mono). The audio
files were synchronized with the measurement logs in order to
track the sound events.

The main acoustic events (aircraft and non-aircraft) in the
recordings were manually labeled and recorded in new files. The
measurement files were also marked, and measured. The results in
this processing and the labeled audio files were included in a data-
base to allow a correct management during the rest of the project.

More than 1000 aircraft events (approximately 14 h), and 1700
non-aircraft audio files (36 h) were labeled.

3.2. Aircraft noise likeness

The noise generated by aircraft is one of those sounds that the
human ear can recognize almost anywhere, no matter what the
duration of the sound or prior knowledge about the probability
of flyovers in that location.

Although sight, perceived sound source location or other infor-
mation can be useful, the audio signal acquired by a single micro-
phone has most of the knowledge needed for recognizing aircraft
sounds. Because of this, it is possible to detect aircraft sounds in-
doors or in movies, for instance.

The method proposed in this paper for the detection of aircraft
sounds is based on the similarity between the input sound and the
sound (noise) generated by aircraft.

By applying a kind of simple fuzzy sets theory [20], an ANL in-
dex has been defined (aircraft noise likeness), to track the similar-
ity between the input sound and generic aircraft sounds. ANL is the
grade of membership of the instantaneous sound input to the air-
craft noise class. The ANL value of 1 denotes full membership, pure
aircraft noise. As the input is corrupted by background noise, the
ANL value decreases, and the weaker the membership in the air-
craft sound fuzzy set.

3.3. Real-time ANL detection

ANL must be calculated from the audio signal acquired by a
microphone, using the scheme in Fig. 1.

This is a classical scheme in pattern recognition. After a digitiza-
tion and windowing process, feature vectors must be extracted.

Previous works [4] have shown that the best results in the rec-
ognition of environmental sounds can be obtained by using Mel
frequency coefficients (MFCC). So we decided to exploit MFCC
(13 coefficients), but using an extended bandwidth (starting at
0 Hz), which have shown better performance due to the low fre-
quency components in aircraft noise [21].

Fig. 2 shows the scheme used for feature extraction [22].
To perform the classification task, we used PRTools [23] for

Matlab. A statistical classifier continuously receives the input pat-
terns and updates its output, according to the Bayes decision rule
[24].

PðC1kxÞ > pðC2kxÞ then Class1; Class2: ð1Þ

where PðC0kxÞ is the posteriori probability of the pattern x to belong
to class Cn.

Instead of using a classical classifier crisp output (1 or 2, for
classes C1 or C2), a sigmoid has been applied for normalization of
its soft outputs, so ANL is calculated as the probability of the input
pattern belonging to the class aircraft sound.

3.4. One-class approach

The first attempt to face the classification task was made using
the classical two class pattern recognition approach. The first class
was supposed to be aircraft noise, and the second one non-aircrafts
sounds.

Good results were obtained for the first tests, as few sound-
scapes were used for the training of the system. But when trying
to generalize results, and testing the system for larger acoustic
environments, we found that error rates increased.

Fig. 3 shows the probability distribution for the thirteen fea-
tures in classes aircraft (target), and non-aircraft (outliers).

Although we had tried to get many objects from the non-air-
craft class, it is not possible to make a good generalization, as it will
always be possible to find new non-aircraft sounds that were not
considered during the training of the classifier.

In order to minimize the effect of a bad sampling of the non-air-
craft class, we tried a one-class classification approach [25–27],
which has shown itself to be more effective. This approach was ap-
plied by [28] to the classification of sounds.

This new approach has proved to be very effective when only
one of the classes can be described with precision, because only
a few samples are available, or because of the huge amount of dif-
ferent objects involved. For instance, this approach has shown
good results for the detection of faces in an image [29].

The training an implementation of the classifier has been car-
ried out using data description toolbox for Matlab [30].

A mixture of Gaussians classifier was selected because of its
performance (speed and error rates). As we had many outliers
available, the model was adjusted according to the following
equation

Fig. 1. ANL detection scheme.

Fig. 2. Feature extraction algorithm.
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where the first line stands for the target class distribution, the third
stands for the outliers distribution, and the second line stands for a
‘background outlier’ (see [30] for details). Then the classifier would
be h(x) as follows:

hðxÞ ¼
target if f ðxÞP h

outlier if f ðxÞ < h

#
ð3Þ

The classifier can be adjusted for a better fit to the target class
dataset, but, during the training, a threshold must be defined to
set the allowed error in the target class.

Testing the classifier on the available outlier objects, and vary-
ing the threshold, it is possible to find the performance of the clas-
sifier on the outlier class. This is the receiver operating
characteristics curve (ROC-curve). By analyzing the ROC-curve, it
is possible to decide the classifier’s working point.

Fig. 4 shows the ROC-curve for three models: 5, 10 and 20 Gaus-
sians per class. For every rate of targets accepted we were able to
configure as the classifier working point, the 20 Gaussian model
accepts a lower rate of outliers.

During the training, a 10% error in targets (for training dataset)
was chosen. Although it is not really important for this application,

the model had 11% of rejected targets and 7% of accepted outliers
when applied to the test dataset.

This adjusted and trained model is used to get the ANL index.
The classifier’s soft output is normalized to express the probability
of the input vector being a target. This is the crisp ANL, defined as
follows

ANLðxÞ ¼ pðTargetkxÞ ð4Þ

3.5. Data exploitation

When the first training set was created, all locations and condi-
tions were used indistinctly. Polluted aircraft sound files were not
included, but no other distinctions were made.

The results were quite poor because the noise sources were not
distributed uniformly, so some sources had many samples while
others had very few.

Additionally, the starting and finishing fragments of aircraft
audio files were included in training, so highly polluted samples
were considered as targets. In a few cases, this caused the detec-
tion of aircraft that did not really exist in the recording, and, in
many cases, this caused the detection of nearly imperceptible air-
craft sounds, which could not be viewed in the measurements pro-
file, and should not be measured.

A data exploitation and selective sampling process [31–33] had
to be made in order to optimize results:

$ Only fragments of ‘pure’ aircraft noise were selected to cre-
ate the target class dataset (starting and finishing fragments
were rejected).

Fig. 3. Probability density function of features in classes aircraft (target) and non-aircraft (outlier).
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$ The same number of aircraft audio files was selected for
every location.

$ Many ‘polluted’ aircraft sounds were added to the outliers
class dataset.

$ Special attention was paid to noise sources which showed
higher false positive rates (for instance, high velocity trains),
including more objects for the training.

3.6. Application

Now, it is possible to use the ANL to detect aircraft sound events
in the audio input of the system.

Other possibilities have been studied, but attending to the typ-
ical behaviour of aircraft sounds the easiest and simplest way to
detect events is to apply threshold and duration criteria to the
smoothed ANL signal. This way it is possible to extract small pieces
of aircraft sounds in noisy environments, as the detection is only
based on ANL, and it does not depend on sound pressure level time
history.

Fig. 5 shows an example of the ANL time history for an aircraft
sound. At the beginning and at the end of the audio file, the aircraft
noise is nearly imperceptible and ANL keeps clearly below 0.5. As
the aircraft gets closer to the microphone, the background noise
becomes weaker compared to the foreground aircraft sound, so
ANL increases to the maximum.

Fig. 6 shows the scheme we have chosen to extract aircraft
noise events from the audio input, in real time.

In noisy environments, the signal-to-noise ratio (SNR, in this
case, aircraft sound to background noise) may probably change
over time, causing several events to be marked for the same air-
craft sound event. The optimization process will extend those
markers separated by <2 s.

During the optimization process a statistical analysis of the
crisp ANL signal is made. Each marker will describe the starting
and finish times, the mean ANL value, and some percentiles. The
ANL90 percentile has been chosen to allow the user to include ex-
tra requirements referred to similarity.

Depending on the specific location, the background noise com-
position, the sound level produced by aircraft, the final user will be
able to find an ANL threshold and a minimum duration that mini-

mizes the number of aircraft not detected, and the number of non-
aircraft detected. The user will decide how long and how polluted
an event must be in order to be measured (or considered in
results).

4. Results

All the results shown in this section have been obtained for just
one training of the classifier, and using the same parameters for all
measurement locations. The ANL threshold was set to 0.6, and no
statistical requirement is considered (ANL90 also 0.6). Having a
previous knowledge about the acoustic environment at one spe-
cific location, would have improved the performance at that
location.

Three different tests have been carried out to describe the per-
formance of the detector:

$ Events checking.
$ SNR events detection.
$ SNR free-run detection.

Although the system works in real time, and some specific mea-
surements have been made after its implementation, most of the
recordings were gathered at an initial stage, so it made no sense
to perform real-time tests. For this reason the tests were carried
out directly using the audio files.

4.1. Events checking

The input in this test is a single audio file which has to be clas-
sified as aircraft or non-aircraft, just depending on the detection of
any aircraft-like sound longer than d (seconds).

The parameter d (duration) should be optimized depending on
every specific location according to the SNR and the typical dura-
tion of the aircraft and non-aircraft noise events. As most environ-
mental non-aircraft events have a short duration, d can be selected
as small as 5 or 10 s, to detect aircraft that hardly exceed the back-
ground noise level.

Fig. 4. ROC-curve.
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Aircraft audio files had been labeled as ‘‘pure aircraft” (negligi-
ble background noise) or ‘‘polluted aircraft” sounds (with high
background noise, or superposed non-aircraft sound events).

This working mode would allow using the system with com-
mercial noise monitors, classified previously detected events (as
radar does, but based on sound characteristics).

Table 1 shows the results obtained with this test. When the
user-defined searching length (d) is 5 s, only 2.3% of the pure air-
craft sounds were misclassified. Increasing d to 10 s, the false
detection rates reduce to approximately 0% for most of the non-air-
craft noise sources. By decreasing d, false detection rates will in-
crease, and error rates of undetected aircraft events will decrease.

4.2. SNR events detection

All aircraft that technicians noticed during the measurements
were manually marked in the measurement logs, with the help
of the recordings. The one second equivalent noise level (LAeq,1s)
time history was used to estimate the background noise level for
every single event. The noise level measured during flyover was
corrected by the background noise level estimation, and then used
to calculate SNR. Applying this procedure, every aircraft noise
event was assigned its own SNR value.

Afterwards, the original unlabeled recordings (approximately
1 h length) were used for the automatic detection of aircraft, set-
ting the duration to 5 s. The manual and automatic lists of events
were compared to obtain the results shown in Fig. 7.

4.3. SNR free-run detection

This test was carried out to find the relation between ANL and
SNR for aircraft sounds (targets).

Only ‘pure’ aircraft sound events were used, as it is easy to man-
ually decide their starting and finishing points in the recordings,
and there is no doubt about the classification of all the measure-
ments as corresponding to the target class.

As only targets were under test, we then calculated ANL and
SNR for every 1 s measurement, and then some statistics were
compiled.

Background and foreground sounds cannot be simultaneously
measured, so it was necessary to estimate background noise level
for every single event, assuming it to be stationary throughout
the whole event. As this test was only applied to ‘pure’ aircraft
sounds, it has been considered that the background noise level dur-
ing the event is equal or higher than the minimum value previous
to the event. So the SNR has been slightly overestimated, which
means that the results obtained are somewhat pessimistic, as the
real performance of the system will be a little bit better.

Fig. 8 shows the distribution of 1 s measurements for the air-
craft events. ANL in most of the measurements is over 0.6, which
was decided to be the threshold for classification. But when the air-
craft is approaching or leaving, it sounds weaker, so SNR decreases.
If SNR is over $3 dB, the measurement will probably be classified
as a target.

Fig. 9 shows the probability of a single measurement (for air-
craft sounds) being misclassified as a function of SNR (ANL thresh-

Fig. 5. Example of ANL time history for an aircraft event.

Fig. 6. Aircraft sound events extraction.

Table 1
Error rates in ‘events checking’ test.

ANL threshold = 0.6, ANL90 = 0.6

Noise source d = 5 s d = 10 s

‘Pure’ aircraft 2.3% 5.9%
‘Polluted’ aircraft 23.4% 33.9%
Car 0.0% 0.0%
Bus 0.0% 0.0%
Lorry 1.0% 0.5%
Motorcycle 1.8% 1.8%
Train 2.5% 0.6%
Emergency vehicle 0.0% 0.0%
People 2.9% 0.0%
Animal 1.8% 0.0%
Industry 0.0% 0.0%
Machinery 0.0% 0.0%
Others 0.0% 0.0%
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Fig. 7. Aircraft events detected as function of event’s SNR.

Fig. 8. Target leq [1] measurements distribution as function of SNR.

Fig. 9. Target measurements misclassified as a function of SNR.
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old = 0.6). If SNR is over 10 dB, the probability of error will be lower
than 10%, so the louder interval of the sound event will be
detected.

5. Conclusions

An aircraft noise likeness indicator (ANL) has been defined, and
applied to the triggering of markers related to aircraft in a mea-
surement log.

The described application of ANL to a real-time aircraft detector
has shown very good results for the unattended classification of
noise events in quiet environments, when SNR is big.

This application is only based on the properties of the sound, ac-
quired with just one microphone, so it is a fairly cheap solution.
Furthermore, it can be easily adapted to the detection of aircraft
sound indoors, from recordings, where array-based, or radar-based
systems cannot be used.

Although all the tests and training have been made using the AC
signal from the omnidirectional microphone in the noise monitor,
the use of a directional microphone could improve the results sig-
nificantly (as it will improve SNR).

All the tests have been carried out for a generalized classifier
and for a default setup and results have been quite good for all
the selected locations. Customized setups could improve results
for specific environments or locations. The system could also be
easily trained for those specific environments, to show its best
performance.

Future work should try to make a definition of the exact starting
and finishing points of the noise events. Afterwards, the detection
process could be improved in order to improve uncertainty.

The patent for the protection of the system and the algorithms
described in this paper is being applied for by the Universidad
Politécnica de Madrid.
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