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Abstract—To which extent can cognition be studied separately
of the sensorimotor systems that support goal-directed action? In
an ongoing debate within developmental science, the embodiment
and situatedness stance postulates that understanding cognition
requires understanding its close link to the sensory and motor
surfaces, its dependence on structured environments and on
behavioral context. Although the neuronally based Dynamic Field
Theory (DFT) has been proposed as a theoretical framework for
the embodiment and situatedness stance, most DFT models have
not themselves been embodied nor situated in real environments.
This paper shows, that DFT provides the concepts required
to embody cognition by implementing the DFT account for
perseverative sensorimotor decision making on an autonomous
robot. The implementation uses very simple motor control
and a very elementary vision system. Reproducing the A -not-
B experimental paradigm with the robot, the robotic model
quantitatively reproduces data from human infants. When the
robot is enabled to freely move in a structured environment
using the same DFT model, the mechanism of habit formation,
which leads to perseveration, is shown to stabilize sensorimotor
decisions. The robot model of older infants, in contrast, uses self-
stabilized neuronal representations to achieve the same goal with
the added advantage of flexiblity as task demands vary.

I. INTRODUCTION

Dynamical Field Theory (DFT) is a neurally based the-
oretical framework for understanding embodied cognition.
DFT models are used in a wide range of fields to formulate
process models of behavior. For instance, saccadic decision
making [1], [2] or manual movement preparation [3] can be
explained by the evolution of activation governed by inputs
and internal neuronal interactions. Changing the characteristics
of neuronal interactions can capture developmental changes
in memory-guided infant reaching [4] and later changes in
spatial cognition via the spatial precision hypothesis [5]. More
recently, DFT has been extended to account for the complex
looking patterns of infant visual habituation [6] and even
higher cognitive processes like visual working memory and
change detection [7].

A. How embodied is DFT?

Typically the models that use DFT concepts are not really
situated in the real word, nor do they have a body. It is a central
claim of DFT, however, that it satisfies the constraints imposed
by situatedness and embodiment, a claim that we investigate
here.

The embodied cognition approach proposes that behavior
arises when the coupled dynamics of the mind, body, and
environment is in a stable state [8]. DFT models are grounded
in the world as they use continuous metric dimensions—most
prominently space. Space is used to bind features of other
dimensions [7]. This allows inputs to be presented with the
same metrics, schedule, and intensities as in the experiments.
Inputs are integrated in the dynamic field and stimulate neu-
ronal interactions that can form stable attractor states in the
field [1], [3]. This stability is a necessary for the cognitive
guidance of behavior.

Grounding in metric dimensions and stabilization by neural
interactions are prerequisites for embodiment. Therefore, it
should be straight forward to implement a DFT model on
a robot and let it act upon its world. We do this, using the
most elementary from of cognition: a sensorimotor selection
of decisions.

B. A-not-B: Infant Sensorimotor Selection Task

Infants’ capacity to select sensorimotor goals is ideal for
a robot implementation as it is a minimal cognitive task in
which infants perform well, as they are not puzzled by the
absence of an imperative stimulus. All one needs to consider is
how the task situation attracts responses. Decision selection is
studied in the A -not-B task with infants [9]–[11]. In this task
an infants is confronted with two identical target locations.
First, the infant is habituated to reach to one location in a
series of A trials: A cue is presented at the A location and
after a delay, the infant is allowed to reach, which is typically
correct to A . Next, this habit is brought into conflict with the
cue: On the B trials, the cue is presented at the alternative
B location. After a delay, 7 to 11 month old infants typically
make the A -not-B error—reaching to A on a B trial. This
is also called perserveration. How much infants perseverate
depends on their age and the delay length [10]. In particular,
infants over 12 months are correct.

We implement the DFT account for the A -not-B task [4],
[12] on an autonomous robot. We demonstrate how decision
selection and initiation are continuously linked to the sensory
surface. No special properties of the perceptual and motor
systems are required to quantitatively match of the infant data
(age-delay dependence of perseveration).



The robotic implementation is also a proof of sufficiency
of the sensory stream to inform decision making, and that
there are no hidden problems in interfaces that do part of the
cognitive work. For instance, an alternative Parallel Distributed
Processing (PDP) account of the A -not-B task [13] uses a
connectionist network where the input units stand for objects
(lids or toys). In an autonomous system, it is not straight
forward to realize “units” that do higher cognition like object
detection. Note that this points to a real distinction between
the DFT and connectionist accounts for the A -not-B task.

Another important difference between the DFT and PDP
approaches is the focus of DFT on the importance of stability.
The robotic demonstration highlights that stabilizing decisions
is a crucial—but often overlooked—work that the nervous
system does to support behavior.

C. Beyond A-not-B
We also test the robot outside the narrow experimental

paradigm of A -not-B . It is placed in an arena where it
can move around autonomously, attracted by targets and
repelled from obstacles. The questions we ask are: What
does it buy the robot to build a habit (motor memory)?
What does it buy the robot to have working memory? The
free behavior demonstrates that both habit formation (causing
perserveration) in young infants and self-sustained activation
via neural interactions in older infants are forms of behavioral
stabilization.

II. METHODS

For this experiment we use a Khepera robot that has
motorized wheels and a head-mounted video camera (Fig. 1).
It is linked to a Linux PC with C/C++ software to numerically
process the video stream, integrate it into the motor planning
dynamics, and generate motor commands. In this section we
describe the perceptual system and the behavioral dynamics
of the robot.

A. Perceptual System: Vision
Targets for the robot are defined by their color. The experi-

menter can interactively set parameters to filter out a particular
color (e.g., yellow in Fig. 1) from the video stream. A pixel-
array of on/off values is generated for a given HSI-interval of
Saturation and Intensity above selected maxima, and of Hue
within a selected range. Each pixel location (x, y) is assigned
1 (on) if the pixel-value is within the selected HSI-interval,
and 0 (off) if it is not. The hue range is set to encompass the
color of the target blocks at different positions and different
typical lighting conditions, while the rest of the color spectrum
is filtered out. This circumscribes the perceptual cues for the
movement targets as on-regions (bottom right in Fig. 1). Two
types of input sources are generated from this on/off image:
homogeneous boost and task input.

Homogeneous Boost: The homogeneous boost constrains
whether to act or not. Activation is boosted everywhere in the
field homogeneously whenever the on-pixel count exceeds a
given threshold in the left and the right half of the image.

⇒ video image

⇓ selecting a HSI-interval

Figure 1. The Khepera robot facing two blocks (left) and the resulting raw
(right top) and HSI-filtered (right bottom) images.

It is a non-linear indicator of whether the blocks are within
reaching space. If they are far, then the overall tendency to act
is low. If they are close, then the activation level in the entire
field is boosted, modelling an invitation to act.

Task Input: The task input provides specific location infor-
mation about targets. For each horizontal viewing direction,
the vision system cumulates along the vertical the number
of pixels within the selected hue range. Thus, each column
provides input with an amplitude that scales with the pixel
count so that cues subtending a larger vertical angle provide
stronger input (i.e., taller or closer blocks).

The visual input is naturally affected by sensory and envi-
ronmental noise. To model that perceptual input is in addition
subjected to neuronal noise, we apply an Ornstein-Uhlenbeck
process τnoiseη̇t = −ηt + ξt, with ξt ∼ N(0, 1) and a certain
latency τnoise. The effect of the neuronal noise scales with the
input amplitude. At each horizontal viewing direction ϑ the
input value is multiplied with [1+Anoiseηt(ϑ)], Anoise a scalar.

A point spread function—the input profile convolved with
a Gaussian bell function—projects the visual input into the
motor planning field. For example, input at ϑ = −25◦ projects
fully to the motor planning neuron encoding −25◦ and it
projects to neighboring neurons with decreasing intensity the
further away these neurons are. This models broad receptor
tuning curves of the motor planning field.

Coordinate Transformation: When the robot moves, the
reference frames of vision (egocentric coordinates) and motor
planning (world coordinates) are no longer aligned. To com-
pensate, the transformation from visual to spatial coordinates is
based on the dead-reckoned ϕ̃ heading direction of the vehicle.
ϕ̃ is realized by path integration, adding up all the small
changes ∆ϕ of the robot’s heading direction. The visual map
is transposed by ϕ̃ to realign with the spatial motor planning
frame.



B. Behavioral Dynamics
Motor Planning Field: The motor planning field ump(ψ) is

defined over the heading direction ψ of the vehicle. In its core
the field is a linear dynamic system with and attractor state at
a negative resting level hrest.

τmpu̇mp(ψ) = −ump(ψ) + hrest + boost + task input
+ neural interactions + preshape.

Perceptual inputs (boost plus task input) and a preshape trace
(from motor memory, described below) stimulate the field
away from its resting state. If the field becomes positive, then
it self-generates activation by means of neural interactions
(local excitation and global inhibition). As a whole, the field
enters a “working” state whereby it sustains an activation peak.
Activated neurons do work—they excite close neighbours
and suppress competing inputs elsewhere—to keep the peak
stabilized.

The work that the field does for behavior is making and
stabilizing decisions. Figure 2a illustrates a sustained peak of
activation in the face of two similarly attractive targets (e.g.,
like in Fig. 1). This peak is maintained despite noise and
despite competition from the other target. Without stability,
in the face of two identical targets the robot will not be able
to approach either: If behavioral was driven directly by the
perceptual system, then the fluctuations in the percepts will
make the robot wiggle left-right-left-and-so-on, whenever the
current precept is strongest. In contrast, as described next, the
stable motor planning peaks can govern behavior and generate
memory traces of that behavior.

(a) motor planing field, preshape field and inputs

(b) robot’s heading direction dynamics

Figure 2. Coupled dynamics of motor planning and turning behavior. Plot (a)
shows the level of activation over the spatial orientation ψ in the motor
planning field as well as its preshape field and perceptual inputs. Plot (b)
shows the heading direction dynamics of the robot. The attractor at ϕtar is
generated by the motor planning peak at ψtar.

Motor System: The robot’s behavioral dynamics is defined
over its heading direction ϕ and is governed by the motor
planning field

τmotorϕ̇ = −α

∫
σmotor(ump(ψ))(ϕ− ψ)dψ.

The sigmoid σmotor maps positive activation to 1 and negative
to 0, α is a scalar that compensates for the width of the peak.
In this formalism, attractor states of the motor planning field
generate attractors for the robot’s heading direction. If the
field is entirely below threshold, then the heading direction
dynamics is constant at 0, and no movement will be generated.
On the other hand, a “working” state of the field with sustained
peak activation generates a behavioral attractor. The peak that
is centered at ψtar (Fig. 2a) defines a linear attractor at the
corresponding heading direction ϕtar (Fig. 2b). The rate of
change is translated into revolution signals for the left and right
wheels. In fact, at each time step of the numeric integration of
the behavioral dynamics, a difference ∆ϕ is calculated. This
difference is then realised by the robot’s movement.

Preshape Dynamics: When the robot moves (Xmove = 1,
else 0), then a motor memory trace is accumulated in the
preshape field upre. It is driven by the motor planning field
and it is defined over the same variable ψ

τpreu̇pre(ψ) = Xmove · [−upre(ψ) + σpre(ump(ψ))] .

The positively activated field sides (mapped to 1 by σpre,
the negative are mapped to 0), leave a local trace in the
preshape field (Fig. 2a). Note that the trace comes from the
motor planning peak that created the behavioral attractor. This
models habit formation: The preshape trace adds activation
to the motor planning, thus making it easier to form a motor
planning peak at the same location and repeat the action again.

III. A -NOT-B EXPERIMENT

A. Procedure
The A -not-B task for the robot is a similar to that for

infants. Two blocks (cf. Fig. 1) are moved on tracks back
or forward to present a cue and to initiate response. The event
sequence of a trial is illustrated in Fig. 3. A trial begins with
the robot facing both blocks that are in the distance for 1
second. Next a larger block is placed close to the robot on one
side (this is A ) to cue that location for 4 seconds. The robot
is not allowed to move at this moment, but a 3 second delay
is imposed. Lastly, both blocks are moved close to the robot,
typically providing enough activation to cause an activation
peak, making the robot turn to one target. The trial ends with
the robot’s response, or after 4 seconds if the robot does not
respond. At the end of the trial, the field is de-boosted, i.e.,
activation homogeneously subtracted in the entire field. This
destroyed the motor planing peak, allowing for a new trial (in
the experiments with infants the toy is taken away to initiate
a new trial).

The task has 6 A and 2 B trials. For training, on the first
three trials, the block on the A side is somewhat closer to
make it more likely for the robot to turn to A . Note that this
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Figure 3. Event sequence on trials of the A -not-B experiment (time axis).
The cue is presented at opposite locations on A versus B trials.

procedure is similar to the training done with infants where
at the A location the hiding lid is placed closer on the initial
trials or a toy is partially visible [11]. Thereafter, both blocks
are placed at the same distance from the robot. After six A
trials, the B trials are presented. The only difference being
that the cue (placing a large block close) is presented at the
alternative B location.

The A -not-B task is repeated 12 times. Half the times A
is left and B is right, and the other half vice versa. Each task
is done with a “naive” robot that has no experience (preshape
field is initialized at 0).

B. Analysis

For each experiment we record the robot’s response (turn
to A , B , or none) per trial; as well as the input stream,
motor planning and preshape fields that interact to produce
a response. The robot turns correctly to A on 85% of the A
trials and makes A -not-B errors on the B trials with 71% of
the turns being to A . This replicates the rates of the younger
(around 7-month old) infants tested in the A -not-B task [10],
[11]. The analysis of the integrated field dynamics explains
how the A -not-B errors comes about in the robot.

Figure 4 lays out the field dynamics for trials A 1 and
B 1. It shows the typical—correct on A and incorrect on
B trials—responses. Showing the large block close induces
activation in the motor planning field at the cued location.
In both cases, this activation decays during the delay. On
the initial A trials, responses are biased to A as the A -site
block is placed somewhat closer. When robot turns to A , it
accumulates a motor memory trace in the preshape field (cf.
Fig. 4a). The trace provides preshape activation to the motor
planning field, thus biases further turns to A . In the course of
six A trials, the preshape trace grows quite strong as can be
seen for trial B 6 in Fig. 4b. This trace biases the robot to turn
to A —to make the A -not-B error—on the B trials, although
the cue is been then presented at the B location.

Strong evidence for the memory traces comes from the
analysis of spontaneous errors [12], which clearly shows
that the habit formation in induced by behavior in recently
preceding trials. We replicate this finding with the robot, as
well a variety of contextual effects, but it exceeds the scope
of this paper to discuss them here. Here we focus on testing

(a) trial A 1 (b) trial B 1

Figure 4. Motor planning (top) and preshape (bottom) on trials A 1 and B 1.
The activation level (red: high, blue: low) is plotted for the spatial direction
ψ (marks indicate A and B ) over time t (marks indicate trial epochs).

the DFT account [4] for infant development in A -not-B .

IV. AGE-DELAY EFFECT IN A -NOT-B
The age-delay interaction is the key developmental signature

of infant behavior in the A -not-B task [10]. Between 7 and
11 months infants tolerate longer delays before perseverating,
while they perseverate gradually less for shorter than the age-
typical maximum delay. Critically, infants 12 months and older
are correct even after very long delays. The DFT account of
A -not-B [4] proposes that neural interactions strengthen over
development (modeled as increment of the resting level hrest).
Stronger interactions sustain the cue over longer periods of
time. We test this developmental account with the robot.

A. Experimental Variations
The resting level for the young robot tested above is

hrest = −12. A higher hrest supports the neural interaction
in two ways [4], [14]. First, less input is needed to pass
the threshold above which the motor planning neurons begin
to interact. Then, a higher resting level directly allows for
a stronger self-excitation. Figure 5 shows how a field with
stronger interactions integrates the specific cue (i.e., placing a
block closer).

(a) mid-aged robot (b) older robot

Figure 5. Motor planning field on trial B 1 for the mid-aged (hrest = −9, at
7 sec. delay) and older (hrest = −7, at 11 sec. delay) robot.

For the mid-aged robot (Fig. 5a), which has an intermediate
level hrest = −9, the cue persists for a longer period then for
the youngest robot (Fig. 4b). Thus, despite a strong preshape



trace at A , it is more likely for the robot to follow the cue. The
shorter the delay is, the stronger the decision will be guided
by the cue.

An even higher resting level brings the dynamics into a
different regime where it can self-sustain an activation peak
even without additional input [14]. This is the case for the old
robot with hrest = −7 (Fig. 5b). Such a peak directs a turn to
B after any delay and despite a strong motor trace at A .

B. Statistical Results
We systematically tested the robot in A -not-B task with

varying delays and resting levels. For the different resting
levels we selected up to three delays, for which we expect
performance to vary. Each hrest-delay combination was re-
peated 12 times. The resulting statistics replicates the age-
delay effect, as shown in Figure 6. For instance, a rather young
robot (hrest = −11) is correct if there is no delay, it performs
around chance for a 2 seconds delay, and it perseverates for a 3
seconds delay. A mid-aged robot (hrest = −9) shows a similar
increase of perserveration, but starting at longer delays.
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Figure 6. Age-delay interaction for the robot. The rate of perserveration
(y-axis) is plotted for different delay lengths (x-axis) and colors code for the
different resting levels. The tested delay-hrest combinations are connected by
solid lines. The dashed lines (color-coded for the hrest’s) indicate the expected
performance for other delays (see text for discussion).

Note that for the mid-aged robot performance is correct at
ceiling for the 3 second delay; and shortening the delay will
not change this since the cue-induced peak that guides the
correct decision is strong also earlier in the delay (Fig. 5a).
Similarly, perserveration is at ceiling once the peak has
decayed. The dashed lines in Fig. 6 indicate these ceiling
effects for the resting levels hrest < −7. The oldest robot
with (hrest = −7) is correct for a long delay of 11 seconds.
The motor planning peak is persistent (Fig. 5b) and will not
decay unless it is actively destructed at the end of a trial (de-
boosting). Performance is therefore always correct.

V. BEHAVIORAL DEMONSTRATION

In this section we investigate the role that motor memory
traces might play for stabilizing decisions in a more natural
behavioral setting. The robot moves around autonomously in
an arena where there are targets and obstacles. Targets, just as
in the A -not-B task, are defined by color, may build attrac-
tors for the motor planning dynamics to generate behavioral
attractors. Obstacles are detected by the robot’s infrared (IR)
distance sensors and build repellors for the robot’s heading

target out
of view

robot
younger

older robot

target

(a) age effect

younger robot
w/ training

target out
of view

target

(b) training effect

target out
of view

younger robot
w/ training

target

distractor

older robot

(c) distractor effect

Figure 7. The red lines (young: dotted, young after training: dashed, old:
solid) depict the paths when the robot moves autonomously in an arena with
targets (yellow cylinders, here circles) avoiding obstacles (wooden blocks,
here tan rectangles). The icon shows the robot’s initial position and orientation.

direction dynamics (see [15], [16] for a detailed description).
This is a simple mechanism to avoid collision.

Figure 7 shows the basic set-up: from its initial position and
orientation, the robot has the distant target in view (cylinders
are taller than the blocks). Input from the target builds a
peak in the peak motor planning field that builds an attractor
for the robot’s heading direction dynamics. When the robot
begins moving, it avoids the obstacles and loses thereby the
target from view. Performance—successful approach of the
target—differs for the young and the old robot. Because the
young robot’s motor planning dynamics is less stable, it can be
manipulated by its motor memory or by competitive targets.
We illustrate the effects of age, training, and perceptual context
in the examples that follow.

A. Age Effect

The performance differences between the young and old
robot are shown in Figure 7a. The young robot fails to
approach the target. Like in the A -not-B task, it fails to
maintain the target location when the target gets out of sight:
The motor planning peak decays, and the young robot loses
its behavioral attractor. The robot simply stops once it is far
enough away from the obstacles. This behavior is comparable
to what Piaget’s [9] “out of sight, out of mind” stage for young
infants who cease to search for an object when it disappears.

The older robot, in contrast, can successfully approach the
target despite an obstacle avoidance maneuver. The stronger
interactions in its motor planning field are maintaining a peak
at the target location even when there is no direct input
from the target. This illustrates that one can conceive of the
stabilization self-sustained peaks of the motor planning field
as a working memory states.

B. Training Effect

Here we illustrate how motor memory may help robust
target acquisition. Before tested, the young robot is given some
training to simply approach the target without any obstacles in
its way. This generates a memory trace in the preshape field
for the target direction. The trace stabilizes goal achievement
by helping to reestablish a peak representing the target after
losing the target from view during an avoidance maneuver.
Figure 7b shows the young robot’s improved performance—it



successfully approaches the target while avoiding the obsta-
cles. It’s trajectory looks very much like that of the older robot
in the previous test (Fig. 7a).

This example demonstrates that the accumulation of motor
memory in the preshape field is a very simple learning
mechanism. The motor memory (which causes the A -not-B
error!) supports here working memory by stabilizing the peak
that defines the target location. Habit formation is actually a
good thing as a process by which previous experience can be
utilised for more successful behavior.

C. Distractor Effect
This example illustrates that motor memory does not always

help. It is not sufficient to support correct target acquisition
when it is brought in conflict with strong perceptual cues. To
test this, we place a distractor that looks like the target in the
arena, as shown in Figure 7c. The distractor comes into view
when the robot turns to avoid the first obstacle. The young
robot—despite its preshape trace for the target!—is attracted
by the distractor. The young robot displays an “in sight, in
mind” behavior. When the distractor comes in view, its input is
strong enough to build a new peak in the motor planning field,
that destroys the old peak by means of inhibitory interactions.
The preshape trace for the target is only local and too weak
to prevent the decay of the target peak.

In contrast, the target peak for the old robot is maintained
by strong neural interactions. It can therefore successfully
approach the target and ignore the competing distractor.

VI. CONCLUSION

DFT can be embodied. Two fundamental concepts—use of
metric dimensions and dynamically stable states—are criti-
cal. Substituting the postulated metric input functions of the
simulation model with input from the real-time video system
only required a few simple filtering operations (here for color,
although other features could have been chosen just as well
such as visual motion). Because the motor planning field is a
dynamical system, and a decision is an attractor state of the
system, it is straight forward to couple a behavioral system
to the motor planning dynamics: The location of a motor
planning peak translates into a behavioral attractor.

With the robotic implementation of the DFT model we
achieve quantitative fit of infant perseveration data. We can
explain how the A -not-B error comes and goes depending on
age and delay with a system that is continously linked to the
sensorimotor interface. Importantly, object recognition is not
required to account for the data. The system has no hidden
and unaccounted for cognitive capacities, such as the object
recognition that is required in order for a neuronal unit to
represent a visual object [13].

Testing the robot beyond the A -not-B setting suggested a
functional interpretation of perseveration as a signature of the
habit formation that stabilizes difficult decisions. The memory
trace helps to repeat motor actions in a way that makes
minimal demands on calibration and alignment of reference
frames, a capacity that in itself is far from trivial [17].

Habit formation, however, makes the system inflexible, less
able to switch with the cue changes. This reveals a important
function of working memory, to stabilize decisions through
self-stabilization of the underlying representation of motor
goals. This mechanism enhances the flexibility of the system,
as it is now capable of following cue changes. This solution
makes stronger demands on calibration, because metric work-
ing memory requires a stable reference frame which remains
invariant between the moment in time at which an instance
of working memory is generated and the moment in time at
which it is used.
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decision making: Dynamic field theory,” Neural Networks, vol. 19, no. 8,
pp. 1059–74, 2006.
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