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P E R S P EC T I V E

The Darwin cure for apiculture? Natural selection and managed 
honeybee health

Abstract
Recent major losses of managed honeybee, Apis mellifera, colonies at a 
global scale have resulted in a multitude of research efforts to identify 
the underlying mechanisms. Numerous factors acting singly and/or in 
combination have been identified, ranging from pathogens, over nu-
trition to pesticides. However, the role of apiculture in limiting natu-
ral selection has largely been ignored. This is unfortunate, because 
honeybees are more exposed to environmental stressors compared 
to other livestock and management can severely compromise bee 
health. Here, we briefly review apicultural factors that influence bee 
health and focus on those most likely interfering with natural selec-
tion, which offers a broad range of evolutionary applications for field 
practice. Despite intense breeding over centuries, natural selection 
appears to be much more relevant for the health of managed A. mel-
lifera colonies than previously thought. We conclude that sustainable 
solutions for the apicultural sector can only be achieved by taking ad-
vantage of natural selection and not by attempting to limit it.

1  | INTRODUCTION

The western honeybee, Apis mellifera, is one of the most economically 
important insects, providing essential pollination services for human 
food security as well as valuable hive products for the apicultural sec-
tor (Klein et al., 2007; Morse & Calderone, 2000). Therefore, major 
losses of managed A. mellifera colonies at a global scale (e.g., van 
Engelsdorp & Meixner, 2010; vanEngelsdorp, Hayes Jr., Underwood,  
Caron, & Pettis 2011; Neumann & Carreck, 2010; Pirk, Human, Crewe, 
& vanEngelsdorp, 2014) have resulted in a multitude of national and 
international research efforts to identify underlying mechanisms 
(Moritz et al., 2010; Potts et al., 2011; Vanbergen et al., 2012; among 
many others). Numerous factors acting singly and/or in combination 
have been identified, ranging from pathogens, over nutrition to pes-
ticides (see Potts et al., 2010 for an overview). However, the role of 
apiculture as another stressor has received far less attention, although 
management can severely compromise bee health. In particular, the 
role of common beekeeping practices in limiting natural selection as a 
potential major factor governing managed honeybee health has been 
completely ignored so far. This is kind of surprising, because it is well 
known that honeybees are more exposed to environmental stressors 

compared to other livestock. As natural selection is the key mechanism 
of evolution, it will enable any given stock of managed honeybees, 
irrespective of habitat (agro- ecosystems, nature reserves, etc.) and/or 
genetic background (endemic, imported, “pure” breeding lines, hybrids 
[e.g., Buckfast], etc.) to adapt to each and every stressor as long as 
the ability to cope with the stressor has a genetic basis so that the 
respective heritable traits can change in this population over time. 
Although domestication always interferes by definition with natural 
selection and apicultural selection has existed for decades, if not cen-
turies (Crane, 1999), we here argue that beekeeping interference with 
natural selection in combination with globalization of industrialized 
apiculture may have now reached levels, where ill effects are inevita-
ble at the colony level. Such ill  effects have previously and repeatedly 
been reported in populations of managed honeybees (see review by 
van Engelsdorp & Meixner, 2010), but the role of natural selection has 
not been considered in this regard. Even though comparisons with 
historical data sets remain notoriously difficult, it appears as if the 
factors compromising managed honeybee health may have reached 
higher levels compared to the past (invasive pests, vectored viruses, 
prophylactic pesticide usage, starvation, etc., reviewed by Potts et al., 
2010). Indeed, globally standardized survey data from the COLOSS 
network over the past 8 years (www.coloss.org) suggest unsustainable 
high losses repeatedly in many  regions globally. Here, we therefore 
briefly review apicultural factors governing honeybee health and focus 
on those probably interfering with natural selection (Figure 1), which 
offers a broad range of evolutionary applications for field practice.

It is evident that the beekeeper is the most crucial (multi)factor 
driving managed honeybee health. Indeed, beekeepers play the key 
role in spread as well as diagnosis and control of new and estab-
lished diseases (Mutinelli, 2011; Neumann, Pettis, & Schäfer, 2016; 
Rosenkranz, Aumeier, & Ziegelmann, 2010), for example, treating 
against ectoparasitic mites, Varroa destructor (Rosenkranz et al., 
2010), not only prevents host–parasite coevolution, but may also add 
to the exposure to pesticides thereby possibly compromising colony 
health (Boncristiani et al., 2012). In general, the high density of col-
onies at apiaries promotes disease transmission and impact (Seeley 
& Smith, 2015) and the large hives compared to natural nests may 
also have a detrimental impact on colony survival (Loftus, Smith, & 
Seeley, 2016). During routine colony inspections, beekeepers fre-
quently break the natural propolis envelope of colonies, which may 
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compromise social immunity (Simone- Finstrom, Evans, & Spivak, 
2009). Apiculture also governs bee nutrition, for example, by placing 
stationary apiaries in areas with bad forage or by choosing the forage 
for the bees in migratory beekeeping. The alternation of honey/pol-
len flows with poor forage periods is indeed a challenge to the colo-
nies to adapt to normal seasonality (Bretagnolle & Gaba, 2015) and 
may affect resilience to diseases. Replacing diverse honey stores with 
low- quality sugar water may also impact health (Erler, Denner, Bobis, 
Forsgren, & Moritz, 2014; Wheeler & Robinson, 2014), and untimely 
and/or insufficient feeding of honey- depleted colonies for overwin-
tering is an obvious key reason for mortality (vanEngelsdorp et al., 
2011). Finally, due to the potential role of endosymbionts and the 
entire associated microbiome of honeybees (Aebi & Neumann, 2011; 
Engel et al., 2016), treatment of colonies with acaricides (Kakumanu, 
Reeves, Anderson, Rodrigues, & Williams, 2016), antibiotics, and even 
sugar feeding may interfere with natural population dynamics of such 
associated prokaryotes. All these factors have received at least some 
attention for improving bee health in the past. However, the limita-
tion of natural selection by beekeepers has so far been ignored for 
mitigation measures.

While treatment against disease is helpful, it nevertheless prevents 
natural selection for improved host resistance and tolerance (Fries & 
Bommarco, 2007; Råberg, Graham, & Read, 2009). In particular, the 
common practice of removing male sexuals (=drone brood) to con-
trol V. destructor (Rosenkranz et al., 2010), basically castrates colonies, 
thereby preventing that well- adapted ones spread their genes in the 
population. This seems significant because recent evidence suggests 
substantial local adaptations of honeybees enhancing colony survival 
(Büchler et al., 2014) and reducing pathogen loads (Francis et al., 
2014). In this regard, the situation in Europe is different to areas, 
in which European honeybees have been imported. Indeed, several 
local subspecies can be differentiated in Europe using morphometric 
or genetic makers (Miguel, Iriondo, Garnery, Sheppard, & Estonba, 
2007; Miguel et al., 2011; Ruttner, 1988). The competition of intro-
duced honeybees with such endemic honeybees and other pollinators 
is plausible (see Moritz, Härtel, & Neumann, 2005; for a review), but 
this is not a focus of this article. Indeed, we here argue about natural 

selection and managed honeybee health and not about conservation 
of endangered honeybee subspecies. Clearly, each honeybee subspe-
cies deserves to be protected in its own rights and local adaptations 
are most likely (e.g., endemic A. m. mellifera in France, Strange, Garnery, 
& Sheppard, 2007). We cannot and do not want to question this ob-
vious nature conservation issue, especially because adapted traits of 
endemic subspecies may be lost due to introgression of foreign ones 
(Meixner et al., 2010). However, the well- justified ongoing nature con-
servation efforts (mainly in Europe) and our suggestion to take advan-
tage of natural selection to improve the health of managed honeybee 
colonies globally are basically two different things. For a functional 
global apiculture, the health of any given colony seems to be more 
relevant than conservation efforts for specific subspecies in Europe or 
elsewhere. This is especially true, because there are nowadays more 
managed colonies of European honeybees outside of Europe than in 
Europe itself (FAO data: http://faostat.fao.org/). For example, suscep-
tibility to infection by the endoparasitic microsporidian Nosema cer-
anae is not linked to honeybee taxa, but results from the variability 
between colonies, and those differences are probably linked to genetic 
variations (Fontbonne et al., 2013).

These genotype–environment interactions, including immuno- 
priming of eggs by the queen in response to pathogens in the hive 
(Salmela, Amdam, & Freitak, 2015), are routinely and constantly dis-
rupted when queens or colonies are moved over large distances, for 
example, from Southern Italy to Finland, as part of international api-
cultural trade. Indeed, the industrial production of tens of thousands 
of queens annually, which are nowadays exported at a continental and 
even global scale (Lodesani & Costa, 2003), clearly interferes with any 
local adaptations. Therefore, “think globally, but breed locally” appears 
an adequate suggestion for honeybee breeders to take advantage of 
natural selection and to foster local adaptations.

In artificial insemination, breeders choose drones (=male sexuals) 
of the right age, which obviously have not made it yet to drone con-
gregation areas and may thus not have the full reproductive potential. 
At isolated mating apiaries, only few drone- producing colonies are 
provided, which are often headed by sister queens, thereby clearly 
limiting the full potential of the highly polyandrous mating system of 
honeybees to generate subfamilies with ample genotypic diversity and 
respective derived benefits (Oldroyd & Fewell, 2007; Mattila & Seeley, 
2007;  Tarpy, vanEngelsdorp, & Pettis, 2013). The equal number of mat-
ings of wild and managed queens (Tarpy, Delaney, & Seeley, 2015) 
suggests that the system has evolved to provide optimal genetic vari-
ation of colonies, but will fail to deliver with closer genetic similarity 
of the drones and reduced mate numbers. A recent study showed that 
honeybee colonies, which were made hyperpolyandrous artificially 
(30 or 60 matings), had improved performance (Delaplane, Pietravalle, 
Brown, and Budge (2015), thereby suggesting that genetic diversity 
of A. mellifera has already been lost and thus drone mates may be too 
genetically similar by now.

The buildup of a stable host–parasite relationship is strongly fa-
vored by vertical transmission of the parasite (Fries & Camazine, 2001) 
and is unlikely to occur when horizontal transmission is the predom-
inant route (Schmid- Hempel, 2011). Indeed, shifts from vertical to 

F IGURE  1 Apiculture and natural selection as a joint framework 
for the health of managed honeybee colonies. Specific beekeeping 
methods, which are likely to interfere with natural selection (=orange 
area), and possible impact on natural selection (=green area) are 
shown with an ongoing colony inspection in the center
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horizontal transmission are known to increase pathogen virulence 
(Woolhouse, Haydon, & Antia, 2005). However, the common practice 
in commercial beekeeping in most countries to routinely requeen col-
onies annually or every 2 years limits the full adaptive potential of ver-
tical transmission. After requeening, parasites are confronted not only 
with an entirely new queen genotype, but also with novel genotypes 
of the drones, the queens have mated with (assuming natural queen 
mating at apiaries and unrelated drone/queen sources). This may have 
caused shifts from vertical to horizontal transmission with respective 
consequences for the virulence of honeybee parasites.

Commercial breeders select against swarming, defensive behavior, 
and propolis usage, thereby probably compromising colony  defense 
and social immunity (Meunier, 2015). Indeed, in Africa, where the 
majority of honeybee colonies are not kept by man and where bee-
keepers are mostly side users not interfering with natural swarm-
ing, queen rearing etc., the virtually nonbred local subspecies have 
less desirable beekeeping traits, but a superior health compared to 
European ones (Pirk, Strauss, Yusuf, Démares, & Human, 2016). This 
supports the  notion of a trade- off scenario between commercially 
 desired traits and bee health. In particular, queen failure is one of the 
foremost mentioned causes of honeybee losses (vanEngelsdorp et al., 
2011; Pettis, Rice, Joselow, vanEngelsdorp, & Chaimanee, 2016) and 
may also be linked to breeding, because queen breeders usually ig-
nore choices made by colonies and choose larvae based on right age 
alone. The natural reproductive cycle of a colony, incl. hormonal and 
nutritional aspects, determines timing and development of drones and 
new queens and often lays outside of the time window for commercial 
queen rearing. Moreover, during emergency queen rearing, the choice 
of the bees is not at random; instead, subfamilies, which are rare in the 
work force, are significantly more likely to end up as queens (Moritz 
et al., 2005). As such royal subfamilies are rare, human choice of lar-
vae based on appropriate age alone is likely to miss those and instead 
offers only suboptimal choices for the bees. Moreover, breeding for V. 
destructor- resistance over >20 years has still not resulted in survival of 
untreated colonies, but natural selection has delivered multiple times 
(Locke, 2016; Rosenkranz et al., 2010), thereby suggesting that breed-
ers should choose traits favored by natural selection. This suggests 
fundamental conceptual flaws in both commercial honeybee queen 
rearing and breeding. As the fitness of a honeybee colony clearly is 
the number of surviving swarms as well as the number of successfully 
mating drones (all other traits are only tokens of fitness), the selection 
by beekeepers for low swarming tendency of colonies and removal of 
drone brood, mainly to combat mites V. destructor, remain probably 
the key factors in limiting natural selection.

There is amplitude of hypothesis- driven research avenues to test 
our claims. For example, the possible role of suboptimal choices made 
by queen breeders for the recent queen- related problems (vanEngels-
dorp et al., 2011; Pettis et al., 2016) could be investigated by compar-
ing the performance of honeybee queens natural chosen by the bees 
themselves with grafted ones in populations, which still have ample 
genetic diversity (e.g., in Africa). Similarly, given that natural selection 
plays the key role for survival of otherwise deadly V. destructor mite 
infestations, the famous “Bond experiment” (Locke & Fries, 2011) 

conducted in other countries should almost always result in at least 
some surviving colonies.

2  | CONCLUSIONS

It is obvious that taking into account natural selection will not solve 
all of the various problems for apiculture, but instead we consider it 
to be a main issue in itself at the moment. As natural selection is the 
differential survival and reproduction of individuals due to differences 
in phenotype, future efforts to enhance managed honeybee health 
should take into account the central role of apiculture in limiting natu-
ral selection and compromising colony health via adjusted keeping and 
breeding of local bees. Here lies a great opportunity for beekeeping in 
several countries, where economic constraints are no longer leading 
as beekeeping has become a hobby sector, with dispersed and small 
apiaries being the rule. Sustainable solutions for the apicultural sector 
can only be achieved by taking advantage of natural selection and not 
by attempting to limit it.
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