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Materials and Methods 
RFID monitoring system and study design 

We simulated intoxication events on free ranging honey bee foragers using homing experiments. 
Individual honey bees were monitored using RFID tags (mic3®-TAG 64-bit RO, iID2000, 13.56 MHz 
system, 1.0×1.6×0.5mm; Micro-sensys GmbH, Erfurt, Germany) and RFID readers and custom-made data-
loggers (Tag Tracing Solutions Inc., Valence, France) placed at the entrance of ca. 30,000-individuals 
colonies (20). Tags were pasted using dental cement (Temposil®2, Coltène Whaledent®) and did not impair 
honey bees’ flight (20). 

We carried out four separate homing experiments where we varied either the degree to which honey 
bees were familiar with the release site (experiment 1 vs. 2), the distance from release site to colonies (1 vs. 
3) or the type of landscape (2 vs. 4). We used three distinct colonies, namely one for experiments 1 and 2 
combined, and one for each of experiments 3 and 4. To avoid colony drift, all colonies were isolated from 
any apiary. 

 
Study areas  

Experiments 1 to 3 were conducted in an intensive cereal farming system of western France (Zone 
Atelier Plaine et Val de Sèvre, French département des Deux-Sèvres, 46°15’N, 0°30’W). This study area is a 
long-term research facility managed by the CEBC research unit. It covers about 450 km2, with land use 
exhaustively georeferenced and updated annually. Agricultural practices are dominated by cereal and maize 
crops in rotation with oilseed rape and sunflower crops. All experiments in this area took place in mid-May, 
after oilseed rape crops and before maize and sunflower blooming, to avoid any concomitant intoxication 
event.  

Experiment 4 took place during the same season in a suburban area in southern France (Avignon, French 
département de Vaucluse, 43°54’N, 4°52’E) with mixed farming fields and orchards of moderate size. In 
both areas, colonies were placed ten days before experiments for habituation.  

 
Capture and experimental intoxication  

Adult foragers were captured at the entrance of the hive in the morning. To avoid selecting young honey 
bees performing simple orientation flights, we only captured foragers returning to the colony with pollen 
loads. Before processing the honey bees, we synchronized their dietary state. They were first offered a 
professional beekeeping candy ad libitum for 60 min, and then were fasted for 90 min before individually 
receiving an experimental (treated vs. control) sucrose solution. Honey bees were then tagged and kept for an 
additional 40-min time lapse before final release to ensure that assimilation was complete. 

We used experimental doses of 1ng of thiamethoxam per honey bee to match values found in realistic 
environmental conditions. For instance, honey bees foraging for nectar in treated winter oilseed rape would 
be exposed to thiamethoxam doses ranging from 0.17 to 2.3ng/individual/day. This was estimated from two 
main parameters (7), namely (i) nectar contamination level and (ii) total amount of nectar foraging honey 
bees need to consume to fulfill daily flight energetic requirements. The former parameter was taken to be 
1.85 !g/kg (official authorization reports: AFSSA file n°2009-1235-CRUISER 350; Anses file n°2007-3336-
CRUISER OSR). The latter parameter was estimated from flight energetics [sugar requirement = 8–12 mg/h 
(7)], daily cumulated flight duration [4–10.7 h (7)] and oilseed rape nectar energy content [approximate sugar 
content in winter oilseed rape = 10–30% wgt/wgt (29)]. These ranges of values return nectar requirements of 
106.7–1284.0 mg/day, totaling daily thiamethoxam doses of 0.17–2.3 ng in treated oilseed rape crops. 

To ensure each tagged honey bee would receive this dose, they were kept individually and offered 20µl 
of a 50% (weight/weight) sucrose solution with a thiamethoxam content of 50µg/l – or no thiametoxham for 
control groups. The sucrose solution was offered in a truncated pipette spike. Honey bees that did not 
consume their individual 20µl reward were not kept in the experiment. Our experimental solution was further 
sent to an independent biological analysis laboratory for validation of thiamethoxam content. The real content 
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was measured to be 67µg/l, i.e. slightly above the expected 50µg/l, leading to an effective dose of 1.34 ng per 
honey bee (Fig. S1). This dose remained nearly four times smaller than the LD50 (50% lethal dose) measured 
for honey bees and reported by the French AFSSA food agency in its official thiamethoxam authorization 
report (file n°2009 – 1235 – CRUISER 350).  

We further confirmed the non-lethal nature of our experimental dose by maintaining 240 captive honey 
bees (from colonies of experiments 1,2 and 4) split into six treated and six control groups of equal size. No 
abnormal mortality was observed. Survival at 4 h was 100% in all groups. After 24h, only three treated and 
two control individuals died, out of the 240 captive honey bees (survival = 97.5% and 98.3% for treated and 
control honey bees, respectively). After 48h, 12 treated and 10 control individuals died (survival = 90.0% 
and 91.7%, respectively). 

 
Homing experiments  

Tagged honey bees were released up to 1 km away from the colony, i.e. at a distance usually covered by 
foragers during normal foraging flights (23). Most released foragers returned to their colony the day of 
release, usually in within few minutes. A smaller proportion (about 5% to 20%) returned the second day of 
release, and up to the third day on very rare occasions. To ensure our monitoring had covered all returns, 
recordings at colonies lasted for five to seven days after release. Releases within a given experiment were 
split into two or three consecutive days. 

In experiment 1, foragers were released 1 km away from their colony, in a site they were familiar with, 
i.e. from which they have returned to the colony at least once. To ascertain they had a prior knowledge of the 
pathway back to the colony, we selectively captured foragers that came back to the colony with bright blue 
pollen loads from a known phacelia field (Phacelia tanacetifolia). Phacelia was planted in a 1-ha field 
specifically for the need of the experiment, and the colony subsequently placed 1 km away (Fig. 2). 

In experiment 2, foragers were released 1 km away as well, but at random sites regarding past foraging 
experience. For that purpose, we used the non-phacelia pollen foragers and released them in equal groups at 
six sites equally spaced along the 1-km release boundary (Fig. 2).  

In experiment 3, foragers were released nearby their colony (70 m) in a site they were familiar with. To 
do so, experiment 1 was repeated using a second colony placed in the phacelia field margin. Phacelia foragers 
were released from inside the field.  

In experiment 4, foragers were released 1 km away from their colony, within a more complex landscape 
compared to the previous cereal farming system experiments. We chose a suburban landscape, including a 
matrix of smaller, more diversified, agricultural fields and orchards. Release site locations conformed to 
experiment 2. 

 
Data analysis  

Homing probabilities of treated and control foragers were compared using exact binomial tests. When 
the difference was significant, we measured the mortality resulting from post-exposition homing failure, mhf, 
as the proportion of non-returning treated foragers relative to proportion of returning foragers we would 
expect from control:  

 
mhf = [control homing probability - treated homing probability]/ control homing probability  
 
Under this form, mhf estimates the proportion of exposed foragers that might disappear due solely to 

post-exposure homing failure, all other sources of mortality or homing failure set apart (natural mortality, 
predation, manipulation stress). Experiments 1 and 2, involving familiar and unfamiliar foragers, 
respectively, were intended to return the lower and upper bounds for mhf. 

 
Honey bee population dynamics model 

To relate mhf with colony dynamics, we introduced its estimated lower and upper bounds into Khoury’s 
et al. population model (21). We simulated the fate of a typical colony starting at the oilseed rape flowering 



 
 

4 
 

period, and under different scenarios of egg-laying rate and of forager exposure to treated oilseed rape 
(proportion of foragers exposed to treated nectar each day). We chose to start simulations with population 
sizes of 15,000 to 18,000, i.e. the average values estimated by professional beekeepers at the beginning of the 
beekeeping season in our study area. Foragers were set to account for 25% of total population. We set natural 
forager death rate to 0.154 individuals.day-1, assuming an expected forager lifespan of about 6.5 days (21, 
27). Other dynamic parameters remained unchanged from Khoury’s et al. basic model [Fig. 3 in (21)].  

We ran simulations under the hypotheses of (i) constant forager death rate with no forager exposure, and 
(ii) forager death rate raised by post-exposure homing failure mhf during a 30-days oilseed rape flowering 
period (30). In the later configuration, exposed foragers were assigned a probability of disappearance 
combining daily death rate and the additional mortality due solely to post-exposure homing failure. The most 
optimistic and most pessimistic population trajectories were simulated using the lower and upper mhf bounds, 
respectively.  
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Fig. S1. 
Official report of the thiamethoxam dosage of the experimental solution carried out by an independent 
biological analysis laboratory. The real solution content (67 µg/l) was close to the expected content intended 
for intoxication experiments (50 µg/l).  
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Fig. S2 
Cumulative homing probability of released foragers in experiments 3 (A) and 4 (B). Temporal gaps denote 
the nighttime between the first and second days of release. Homing experiment 3 was carried out in the cereal 
farming system with foragers released 70 m away from their colony, in a site they were familiar with (A). 
Homing experiment 4 was carried out in a suburban landscape with foragers released 1 km away form their 
colony, at random sites regarding their past experience (B). In both cases, treated honey bees that received a 
non-lethal dose of thiamethoxam returned to the hive in significantly lower proportions than control honey 
bees (Table S1). 
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Table S1. 
Comparison of homing probabilities between thiamethoxam-treated and control honey bee foragers, and estimated mortality due to post-exposure 
homing failure, mhf. Foragers were released 1 km away from their colony, either at a foraging site they are familiar with (Experiment 1), or at a random 
site regarding their past experience (Experiment 2). Experiment 3 repeats Experiment 1, but at a minimal release distance (70m). Experiment 4 repeats 
Experiment 2, but in a suburban landscape. In all experiments, homing probabilities in treated foragers were significantly smaller than control ones, 
either at 4hrs of release, or after experiments ended. 
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Additional Database S1 (separate file) 
Data for main results (Fig. 3 and Fig. S2). 
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